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Summary

Heteroplasmic mtDNA defects are an important cause
of human disease with clinical features that primarily
involve nondividing (postmitotic) tissues. Within single
cells the percentage level of mutated mtDNA must ex-
ceed a critical threshold level before the genetic defect
is expressed. Although the level of mutated mtDNA may
alter over time, the mechanism behind the change is not
understood. It currently is not possible to directly mea-
sure the level of mutant mtDNA within living cells. We
therefore developed a mathematical model of human
mtDNA replication, based on a solid foundation of ex-
perimentally derived parameters, and studied the dy-
namics of intracellular heteroplasmy in postmitotic cells.
Our simulations show that the level of intracellular het-
eroplasmy can vary greatly over a short period of time
and that a high copy number of mtDNA molecules de-
lays the time to fixation of an allele. We made the as-
sumption that the optimal state for a cell is to contain
100% wild-type molecules. For cells that contain path-
ogenic mutations, the nonselective proliferation of mu-
tant and wild-type mtDNA molecules further delays the
fixation of both alleles, but this leads to a rapid increase
in the mean percentage level of mutant mtDNA within
a tissue. On its own, this mechanism will lead to the
appearance of a critical threshold level of mutant
mtDNA that must be exceeded before a cell expresses a
biochemical defect. The hypothesis that we present is in
accordance with the available data and may explain the
late presentation and insidious progression of mtDNA
diseases.
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Introduction

mtDNA defects cause a diverse group of diseases that
often result in severe morbidity and premature death
(Wallace 1992; Johns 1995; Shoffner 1996). Individuals
with pathogenic mtDNA defects (deletions and point
mutations) usually harbor a mixture of mutant and wild-
type mtDNA within each cell (heteroplasmy; Larsson
and Clayton 1995). In vitro studies have shown that the
percentage level of mutant mtDNA must exceed a critical
threshold level before a cell expresses a mitochondrial
respiratory-chain deficiency (Attardi et al. 1995). The
percentage level of heteroplasmy varies between differ-
ent organs and also between adjacent cells within the
same organ. These differences are partly due to the dif-
ferential partitioning of mitochondrial genomes, be-
tween daughter cells, during embryological development
(vegetative segregation; Lightowlers et al. 1997). How-
ever, there is increasing evidence that the level of mutant
mtDNA in nondividing (postmitotic) tissues may change
during a human lifetime (Larsson et al. 1990; Poulton
and Morten 1993; Weber et al. 1997). The most dis-
abling manifestations of mtDNA disease arise through
the clinical involvement of postmitotic tissues such as
skeletal muscle and neurons (Chinnery and Turnbull
1997), and changes in mutation load, with advancing
age (longitudinal changes), may explain the late pre-
sentation and insidious progression of mtDNA diseases
(Wallace 1995). Our understanding of mitochondrial
disease, therefore, is critically dependent on our knowl-
edge of the mechanisms that determine the level of mu-
tant mtDNA within the cell, but, in the foreseeable fu-
ture, it is unlikely that we will be able to measure this
level directly. We therefore chose a mathematical ap-
proach to the investigation of the potential longitudinal
changes in mtDNA heteroplasmy in human cells.

Each mammalian mitochondrion contains 2–10 cop-
ies of mtDNA, resulting in 1,000–100,000 copies in each
human cell (Larsson and Clayton 1995; Lightowlers et
al. 1997). Despite the high copy number, recombination
of mtDNA molecules is rare (Howell 1997), and each
mtDNA molecule replicates independently. Nuclear
DNA replicates once during the cell cycle. By contrast,
mtDNA turns over continuously. Individual mtDNA
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Figure 1 Number of molecules of neutral allele A (a) and neutral
allele B (b), for 10 independently simulated cells. Each simulated cell
started with proportions of 75% for allele A and 25% for allele B
and with 1,000 mtDNA molecules. Each cell trace in panel a has a
corresponding trace in panel b (e.g., see the traces marked by an as-
terisk [*]). The mean numbers of alleles A and B, averaged over the
10 cells, are shown by the boldface line. Over a short period of time,
the frequency of each allele varied markedly, and there was a striking
difference between any two simulated cells.

molecules replicate at random, making one or more cop-
ies at a time while maintaining a relatively constant total
number of mtDNA molecules within the cell (relaxed
replication; Birky 1994). If there are two or more dif-
ferent types of mtDNA molecules within a cell, then, by
chance, any one type of molecule may replicate more
frequently than another type, resulting in a change in
the level of heteroplasmy within the cell (intracellular
drift).

We developed a computer simulation of a somatic
human cell containing a mixed, nonpartitioned (pan-
mictic) population of two different mtDNA molecules.
Because the model was developed to increase our un-
derstanding of mtDNA disease, our simulations always
began with 11% mutant mtDNA within the cell, and
we assumed that rare somatic mutations had no signif-
icant effects. We based the model on experimentally de-
rived parameters. Any inaccuracies in these parameters
may have influenced the absolute values predicted, but
they are unlikely to have altered the overall trends. We
first studied the dynamics of intracellular heteroplasmy
for two neutral alleles and then studied the effects of a
pathogenic allele.

The Basic Model: Two Neutral Alleles

We assumed that, in a collection of mtDNA molecules
containing two distinct neutral alleles, A and B, each
molecule was destroyed with a half-life, T1/2, of 1–10 d
(Gross et al. 1969). If new mtDNA molecules are gen-
erated at a copy rate C, then the total number N of
mtDNA molecules within each simulated cell changes at
the following rate:

dN N
� C � , (1)

dt t

where . If the bioenergetic demands on thet � T /ln (2)1/2

cell remain constant, the cells harboring neutral mito-
chondrial alleles are likely to maintain a relatively stable
number of mtDNA molecules (Clayton 1996). We called
this value “NOptimal.” In order to maintain a steady num-
ber of mtDNA at NOptimal, the copy rate, determined from
equation (1), must be . Starting with anC � N /tOptimal

initial population of mtDNA molecules within a single
cell, each mtDNA molecule has a probability ofDt/t
being destroyed during a given time step Dt. Destroyed
mtDNA molecules were removed from the population.
We then calculated the number of new mtDNA mole-
cules, , that were created during the sameN � CDtNew

time step and made a single copy of NNew randomly
chosen molecules from the remaining population. This
process was repeated for each time increment. Although
an mtDNA molecule may be copied more than once
when it replicates (Birky 1994), this is unusual in mam-

malian cells (Flory and Vinograd 1973). For simplicity,
we report here the results for single replications.

Figure 1a and b shows the results of 10 independent
and representative simulation runs for single cells. Each
cell contains ∼1,000 mtDNA molecules in which the
initial proportions of the two alleles were 75% for allele
A and 25% for allele B. Simulated cells that began with
the same initial proportions of alleles A and B developed
radically different mtDNA populations over a short pe-
riod of time, and the level of heteroplasmy within any
one cell varied greatly throughout the simulation. The
average proportions of the two neutral alleles, for as few
as 10 simulated cells, remained relatively constant (ap-
proximately equal to the starting values). This suggests
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that single measurements of heteroplasmy in small tissue
homogenates or in single cells may be of limited value
in elucidating the cellular mechanisms underlying a lon-
gitudinal change. However, by use of this model, insight
into these processes should be possible, by the study of
the distribution of heteroplasmy in a large number of
individual cells, at two or more points in time.

We then studied the probability of fixation for a par-
ticular allele, by performing sufficient simulation runs
to ensure that ∼1,000 cells became fixed on that allele.
Statistical measurements then were made on the sub-
population of cells that eventually fixed on the chosen
allele. We then constructed the probability distribution
curves for the fixation time for each allele, over a range
of different values for the initial proportions of allele A
and allele B, for cells containing 100–2,000 mtDNA
molecules and for a T1/2 of 1–10 d. We tested the prob-
ability distributions generated by the simulations against
a large number of known probability distributions. The
inverse Gaussian (Wald) distribution accurately de-
scribed the distribution drawn from our simulation data
(fig. 2a; Johnson et al. 1995). This may be written as
a function of the probability density p(t) of fixation at
time t:

l �l 2( ) ( )p t � exp t � m , (2)� [ ]3 22pt 2m t

where m is the mean time to fixation and l is a parameter
that determines the shape of the distribution. By meas-
uring this probability distribution for many different val-
ues of the simulation parameters, we found that the
quantities m and l were simple functions of the initial
allele frequency NOptimal and of T1/2 (fig. 2b and c). By
use of figure 2b and c, the mean time to fixation for any
initial population of mtDNA molecules can be deter-
mined, given the average number of mtDNA molecules
in the cell (NOptimal) and the half-life (T1/2).

We made four important observations. First, the dis-
tribution was highly skewed, with a long positive tail:
the final 25% of the cells took much longer to fix than
the first 25% of the cells. Second, the mean time to
fixation was proportional to the number of mtDNA mol-
ecules within the simulated cell and was a function of
the initial allele frequency (fig. 2b). Third, shortening of
the mtDNA half-life proportionately shortened the mean
time to fixation (fig. 2b). Finally, the proportion of cells
that became fixed for any particular allele was equal to
the initial allele frequency, as would be expected for any
simple model of random intracellular drift.

The Disease Model: Wild-Type and Pathogenic Alleles

In a healthy cell, the number of mtDNA molecules is
tightly regulated (Turnbull and Lightowlers 1998). By

contrast, mtDNA proliferation is one of the hallmarks
of heteroplasmic mtDNA mutations involving tRNA
genes (rearrangements and point mutations) (Mita et al.
1989; Shoubridge et al. 1990; Moraes et al. 1992; To-
kunaga et al. 1994). In skeletal muscle fibers, these mu-
tations are accompanied by mitochondrial proliferation
in the subsarcolemal space (giving rise to a so-called
ragged-red appearance). mtDNA proliferation also oc-
curs in other tissues (Kaufmann et al. 1996), which sug-
gests that it is an essential compensatory response to the
presence of a pathogenic allele (Schon et al. 1997). In
developing the disease model, we therefore made the
assumption that the optimal state for a cell was to con-
tain the same number of wild-type molecules as a cell
that did not contain any mutant mtDNA. As in the basic
model, we called this number “NOptimal.” If a cell did not
contain NOptimal wild-type molecules, then the total in-
tracellular mtDNA pool would proliferate in an attempt
to redress the balance.

Although it is likely that any one pathogenic mutation
would result in only a relative deficiency of mtDNA
expression (Schon et al. 1997), we assumed, for sim-
plicity, that the pathogenic allele rendered the mito-
chondrial gene completely functionless. Pathological
mtDNA proliferation was incorporated into the model
by identification of our two types of mtDNA as “wild-
type” and “mutant.” We then made the mtDNA pop-
ulation copy rate C a linear function of the number of
wild-type mtDNA, NWild, according to the following
equation: , whereC � C [a � (1 � a) (N /N )]0 Wild Optimal

and where the growth coefficient a is aC � N /t0 Optimal

constant 11. Thus, when the cell contains the optimal
number of wild-type mtDNA (i.e., when N �Wild

), the copy rate is , which is identical toN C � COptimal 0

that for neutral alleles (see eq. [1]). As the number of
wild-type mtDNA molecules falls below NOptimal, the
copy rate increases linearly until it reaches a maximum
value of aC0 when . Increasing the copy rateN � 0Wild

by a factor of a causes the stable number of mtDNA to
increase by the same factor a. We derived a from ex-
perimentally determined values for maximal mtDNA
proliferation (5–17-fold [Mita et al. 1989; Shoubridge
et al. 1990; Moraes et al. 1992; Tokunaga et al. 1994]).
Thus, in this model, the mutant mtDNA molecule does
not have a replicative advantage over a wild-type mol-
ecule. The other parameters of the basic simulation were
left unchanged.

Figure 3a and b shows a typical time evolution for
the wild-type and mutant alleles in 10 individual sim-
ulations. The development of the two populations was
strikingly different. Within an individual cell, the num-
ber of wild-type alleles tended to remain close to the
optimal value, whereas the number of mutant alleles
fluctuated greatly. As with the simple model, the total
number of cells that became fixed on each allele was
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Figure 2 a, Probability density of fixation of the alleles, for the simulations in figure 1. The data points are the values calculated from
the simulations, and the curves show the inverse Gaussian (Wald) distribution (eq. [2]). These probability distributions have long positive tails.
b, Relationship between mean time to fixation and initial allele frequency p for the simulated cells. Each data point was calculated from
1,000–100,000 cell simulations with different basic parameters: an unblackened circle indicates and d; a blackenedN � 100 T � 10Optimal 1/2

triangle indicates and d; a blackened square indicates and d; a plus sign (�) indicatesN � 200 T � 10 N � 1,000 T � 10Optimal 1/2 Optimal 1/2

and d; and a multiplication sign (#) indicates and d. The mean time to fixation is a functionN � 2,000 T � 10 N � 100 T � 1Optimal 1/2 Optimal 1/2

of the initial allele proportion and is proportional to T1/2 and the number of mtDNA molecules within a cell. When the curve is extrapolated
to an initial , 50% of the cells that eventually become fixed on this allele will become fixed within a time (NT1/2). As p approachesp ≈ 0 t ≈ 1.5
0, the fraction of cells that fix on this allele also approaches 0. c, Probability distribution–shape parameter l as a function of the initial population,
the number of mtDNA molecules, and T1/2. This curve can be used to calculate the probability distribution (panel a) of the fixation times,
determined by equation (2), for a given mean fixation time m (symbols defined as for panel b).

equal to the initial starting frequency for that allele.
However, the mean time to fixation in these simulations
was delayed for both the wild-type and mutant alleles
(fig. 4). This delay was greater for cells that ultimately
became fixed on the mutant allele, and, as a conse-
quence, the time that each cell maintained a near-optimal
number of wild-type mtDNA molecules was greatly
lengthened.

We also observed an inverse correlation between the
levels of the mutant and wild-type alleles. Over a large
number of independent simulations, the level of mutant
mtDNA was found to be related to the level of wild-
type mtDNA, according to the following equation:

1
N � N ≈ N . (3)Wild Mutant Optimal

a

If (the percentage mutation load,R � N /NMutant Mutant Total

a value that usually is determined for patients with
mtDNA disease) and , then equa-N � N � NTotal Wild Mutant

tion (3) can be written in terms of :N /NWild Optimal

( )a 1 � RMutantNWild � . (4)
( )N a� 1 � a ROptimal Mutant

Figure 5 shows a plot of equation 4. When (as ina � 1
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Figure 3 Number of molecules of wild-type allele (a) and mutant allele (b) in the disease model. Results for 10 independently simulated
cells are shown, and each cell initially contained 1,000 mtDNA molecules with 75% wild-type and 25% mutant mtDNA. In these simulations
the mtDNA population in individual cells increased up to fivefold ( ) in response to the number of wild-type mtDNA molecules withina � 5
the simulated cell (see text). The mean numbers of mutant and wild-type alleles, averaged over the 10 cells, are shown by the boldface lines
(panels a and b). The mean percentage of mutant mtDNA (panel c), averaged over the 10 cells, showed a progressive increase with time.

the basic model), the relationship againstN /NWild Optimal

was linear. However, with increasing valuesN /NMutant Total

of a, a “shoulder” appeared in the graph. For cells con-
taining low to moderate levels of mutant mtDNA, the
ratio remained approximately constantN /NWild Optimal

and near unity. In other words, the cell maintained a
level of wild-type mtDNA that was similar to the level
in cells that contained no mutant mtDNA (homoplas-
mic wild-type mtDNA). However, once a critical level
of mutant mtDNA was exceeded, then the ratio NWild/
NOptimal fell abruptly.

Because an individual cell maintained a near-optimal
level of wild-type mtDNA at the expense of an increasing
level of mutant mtDNA, the mean percentage level of
mutant mtDNA, averaged over a number of cells, in-
creased with time (fig. 3c). The mean value shown in
figure 3c was obtained from an average over only
10 cells, and, even with this small number of cells, the

large fluctuations seen in the individual cells were not
apparent.

Discussion

Precisely how a cell fixes or removes a pathogenic
mtDNA mutation is fundamentally important to our un-
derstanding of the relationship between the mitochon-
drial genome and disease. It seems intuitive that a high
mtDNA copy number will protect against the accumu-
lation of deleterious mutations, but how this protective
effect might occur has not been clear. Our model has
shown that, within the constraints of human physiology,
relaxed replication alone will tend to prevent new mu-
tations from reaching significant levels. If correct, it is
highly unlikely that such a fundamentally important
mechanism would have arisen by chance. Human
mtDNA accumulates mutations at 10–16# the rate of
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Figure 4 Relationship between mean time to fixation and initial
allele frequency, for the disease model. Simulated cells initially con-
tained 1,000 mtDNA molecules, and we set (see text). Thea � 5
unblackened circles indicate neutral alleles (as in fig. 1b). Proliferation
delays the mean time to fixation, for both mutant and wild-type alleles.
For cells that ultimately become fixed on mutant mtDNA, the delay
is greater than for those that become fixed on wild-type mtDNA.

Figure 5 Relationship between number of wild-type mtDNA
(NWild), relative to the optimal number (NOptimal), against the percentage
of mutant mtDNA ( ), for different values of maximal pro-N /NMutant Total

liferation a. Proliferation of mitochondrial genomes in a simulated
disease cell maintains near-optimal levels of wild-type mtDNA, up to
a critical point. Beyond this point, further proliferation results in a
massive increase in mutant genomes, and the level of wild-type mtDNA
rapidly falls below the optimal level. Higher maximal levels of pro-
liferation (i.e., higher a values) maintain near-optimal levels of wild-
type mtDNA for a longer period of time but result in a more abrupt
transition from to a predominance of mutant molecules.N ≈ NWild Optimal

the nuclear genome (Larsson and Clayton 1995), but,
despite the importance of each mitochondrial gene, mi-
tochondria are relatively deficient in DNA-repair mech-
anisms (Lightowlers et al. 1997). The results that we
present here are consistent with the hypothesis that, at
least in part, human cells contain a high copy number
of mtDNA molecules in order to protect them against
the accumulation of mutant alleles during their lifetime.
This may be part of the reason why short-lived human
cells (such as leukocytes and sperm [Zhang et al. 1994;
Ankel-Simons and Cummins 1996]) have a low mtDNA
copy number (�1,000), despite a heavy dependence on
mitochondrial oxidative metabolism, whereas long-lived
cells (such as skeletal muscle cells, central neurons, and
oocytes [Lightowlers et al. 1997]) contain many mtDNA
molecules (1100,000).

This model also sheds light on the mechanisms that
potentially are responsible for the late presentation and
progression of mtDNA diseases. In designing the model,
we assumed that each cell attempts to maintain an op-
timal level of native mtDNA and that each cell must
“sense” that it does not contain an optimal number of
wild-type molecules. This mechanism presumably is a
function of the nucleus and does not necessarily need to
occur through a biochemical respiratory-chain deficiency
(Schon et al. 1997). The proliferation of mtDNA will
delay the time necessary to fix an allele but only up to
a critical point (fig. 5). After this point, relaxed repli-
cation will lead to an abrupt reduction in the number
of wild-type molecules, which has two important con-
sequences. First, the mean tissue level of mutant mtDNA

will increase over time (fig. 3c). This increase occurs
through the proliferation of mtDNA in heteroplasmic
cells that contain suboptimal levels of wild-type mtDNA.
Thus, this model illustrates a potential mechanism for
the accumulation of mutant molecules in postmitotic
tissues; it is supported by observations from the study
of patients with progressive mtDNA disease (Larsson et
al. 1990; Weber et al. 1997); and it may explain the late
presentation and subsequent clinical progression in pa-
tients with mtDNA disease (Wallace et al. 1995). Second,
on the basis of this model, measurements of single cells
likely will fall into one of two groups. Those cells with
percentage levels of mutant mtDNA below the abrupt
shoulder will contain a near-normal number of wild-type
mtDNA molecules. By contrast, cells with percentage
levels of mutant mtDNA above the abrupt shoulder will
contain substantially less wild-type mtDNA molecules.
Thus, for cells around this transition zone, subtle
changes in the percentage of mutant mtDNA will be
accompanied by dramatic changes in the amount of
wild-type mtDNA. This effect, on its own, will lead to
the appearance of a critical threshold level of mutant
mtDNA that must be exceeded before the genetic defect
is expressed. This model suggests that the threshold ef-
fect (Wallace 1995) is a direct consequence of the main-
tenance of wild-type copy numbers by relaxed replica-
tion of mtDNA.

In patients with mtDNA disease, different genetic de-
fects have subtly different effects on mtDNA expression
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(Moraes et al. 1992; Schon et al. 1997). In our disease
model, a is related to the maximal rate of proliferation
of mtDNA measured in vivo and, thus, reflects the nature
of the genetic defect. A higher level of a not only will
delay the time to fixation of an allele but also will de-
termine the abruptness and the absolute level of the ap-
parent critical threshold. Since mtDNA proliferation is
a response to the presence of suboptimal mtDNA mol-
ecules, higher rates of mtDNA proliferation will occur
in cells harboring molecules that have a major effect on
mtDNA function. According to our model, this will lead
to a high apparent threshold (80%–90% for ),a � 17
which is consistent with observations from the study
of patients with the A3243G MELAS (mitochondrial
myopathy, encephalopathy, lactic acidosis, and stroke-
like episodes) mutation (Tokunaga et al. 1994) and the
A8344G MERRF (myoclonic epilepsy with ragged red
fibers) mutation (Boulet et al. 1992). By contrast, mu-
tations that have a less detrimental effect will be accom-
panied by less proliferation, and the apparent threshold
will be less abrupt and at a lower value (50%–70% for

). This is consistent with observations from thea � 7
study of patients harboring mtDNA deletions (Hayashi
et al. 1991; Shoubridge 1994). The extreme variability
both between and within our simulated cells highlights
the need for many measurements when single cells are
studied (figs. 1 and 3). This variability also may explain
apparently conflicting data from different laboratories
(Mita et al. 1989; Shoubridge et al. 1990; Moraes et al.
1992; Tokunaga et al. 1994).

We present this model as a hypothesis that is sup-
ported by experimental observation. The expression of
mtDNA is complex, and we recognize that nuclear and
mitochondrial genetic factors may influence the tran-
scription and translation of mitochondrial genes (Lars-
son et al. 1998; Turnbull and Lightowlers 1998). This
model is not intended to provide a comprehensive ex-
planation of human mtDNA maintenance and expres-
sion. For example, we have not considered the possibility
of more than two alleles within a cell, because significant
levels of triplasmy are probably very rare (Lightowlers
et al. 1997). Furthermore, the intracellular drift of
mtDNA heteroplasmy likely will be influenced by the
packaging of mtDNA into discrete units (such as mi-
tochondria or nucleoids), which we will include in later
models. We believe, however, that the simulations we
have described clearly demonstrate the potential for tem-
poral dynamics of intracellular heteroplasmy in human
cells. Relaxed replication also may be involved in the
clonal expansion of somatic mtDNA mutations during
aging (Brierley et al. 1998) and may contribute to the
diverse genotypes and phenotypes seen in families har-
boring pathogenic mtDNA mutations (Lightowlers et al.
1997), further highlighting the importance of this mech-

anism in our understanding of mtDNA and its relation-
ship to aging and disease.
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